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Abstract. Two types of extreme collective motion, large-amplitude many-phonon vibration of the ionic core
and rotation of the cluster with high angular momenta, are considered. The interplay between vibration
and collective motion towards fission is discussed. A new mechanism of formation and rupture of the neck is
proposed which is based on the Franck-Condon principle, and accounts for the interplay between vibration
and fission. Under rotation, the change of the shape of the cluster and a phase transition from axially
symmetric to triaxial ellipsoid are predicted. For studying the effects, vibrational motion can be induced
by laser radiation. Rotational motion may arise in collisions of clusters.

PACS. 36.40.-c Atomic and molecular clusters – 36.40.Ei Phase transitions in clusters

1 Introduction

Much progress has been achieved in understanding of the
properties of metal clusters of Na thanks to experimental
and theoretical studies undertaken during the last years.
Many properties of clusters can be understood in the
framework of the Liquid Drop Model (LDM). This model
has a firm microscopic basis (e.g., [1–3]), and thus com-
bines merits of relative simplicity and transparency with
adequate general description of the phenomena. Sodium
clusters are of especial interest. They can be considered
as mixed droplets of two kinds of quantal liquids: the
ions of the core and the conduction electrons. Due to
the difference in masses, each component undergoes its
own kind of motion independently, in accordance with
the Born-Oppenheimer hypothesis. The electrons perform
collective vibrations about the ionic substratum with the
plasma frequency. The interplay between these two kinds
of motion is analogous to the interplay between the collec-
tive and the single-particle modes in nuclei, e.g. in fission.
The plasmon states can be selectively excited by applying
an intense laser field. The plasmon energy can be trans-
ferred to the core due to the interaction, leading to fission.
Note that, in the case of atoms, the intensity of externally
applied resonance radiation of a laser in the vicinity of
the nucleus may be considerably enhanced due to reso-
nance properties of the electron shell (e.g. [4,5] and refer-
ences therein). A similar effect may be expected in clus-
ters, where the collective motion of the ionic core towards
fission may be induced by laser resonance excitation of the
plasmon mode. Understanding the interplay between the
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different degrees of freedom of the clusters in the dynam-
ics of their laser induced fission is thus a problem of great
current interest.

In the present paper we study large amplitude col-
lective motion of the core, preceding fission. At such de-
formations, certain qualitative and quantitative effects do
arise in comparison with small-amplitude collective mo-
tion: anharmonicity, three-axiality and others. Our paper
is devoted to consideration of these effects.

Our simple estimates based on the liquid-drop model
show that the energy ~ω (one quantum of vibration en-
ergy) is of the order of 0.001 eV, a value which is sev-
eral hundred times smaller than a plasmon energy. This
is in contrast with nuclear fission, where the excitation of
8–10 low-lying quadrupole phonons is enough to reach the
fission barrier (e.g. [6] and references cited therein). For
this reason, a large-amplitude vibration of the core leading
to fission inevitably contains a great number of elementary
phonons and, therefore, can be described classically.

In Section 2 we consider classical vibrations of a quan-
tal liquid droplet undergoing ellipsoidal deformations in
the framework of the LDM, assuming irrotational flow of
an incompressible liquid. The conclusions of this peda-
gogical calculation lead to the development of useful in-
sights into the physics of fission. The analytical solutions
obtained in Section 2 confirm the validity of the Werner-
Wheeler method which is used to describe fission within
the LDM. Furthermore, the present analysis allows one to
look at the formation and rupture of the neck from an-
other angle. There is an open question of the mechanism
of the neck rupture: fluctuation of density, random neck
rupture, etc. Depending on the approach, various forms
and thicknesses of the neck are considered. Ellipsoidal
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deformation with large amplitude which is considered in
Section 2 should finally go into the fission mode which is
characterized by another shape, e.g., that of two intersect-
ing spheres. In Section 3 we propose a new mechanism for
the transition between the two families of shapes which is
in fact founded on the Franck-Condon principle and ac-
counts for the interplay between vibration and fission. Nu-
merical results, including the density of vibrational levels,
are also presented in Section 3. In Section 4 we outline a
possible approach to the description of the interaction be-
tween the plasma-type excitations and the motion of the
ionic core. In Sections 5 and 6, the rotation of a cluster
with a certain angular momentum is considered.

In conclusion, we sum up the results and outline the
perspectives for future investigations.

2 Ellipsoidal shape parameterization

Let us consider a vibration of an incompressible liquid
drop such that, at each instant, the shape is an ellip-
soid, with time-dependent half-axis c in the direction z,
and time-dependent half-axis b in the perpendicular di-
rections x and y. We assume irrotational flow. In view
of volume conservation, the values of c and b are related,
at each instant, by the equality cb2 = R3, R being the
radius of the drop with an equilibrium spherical shape:
R = 3.93N1/3 bohr, N being the number of the atoms
in the cluster [7]. Choose c as a collective variable. Then
the mass and restoring force parameters can be found by
solving the Laplace equation for the velocity field with ap-
propriate boundary condition, analogously to the case of
small-amplitude multipole vibration [8]:

∆χ(x, y, z) = 0. (1)

The velocity field is given by

v(x, y, z) = −∇χ(x, y, z). (2)

Hereafter we use the notation î, ĵ, k̂ for the unit vectors
along the Cartesian axes x, y and z, respectively. A solu-
tion of equation (1) satisfying the proper boundary con-
dition is given by

ṙ(t) ≡ v(t) =
ċ

2c

(
x̂i + yĵ− 2zk̂

)
. (3)

Indeed, if we define the surface by F (r, t) = 0, where

F (r, t) ≡ x2

a2(t)
+

y2

b2(t)
+

z2

c2(t)
− 1, with a = b, (4)

then the surface condition [9,10]

dF
dt

= ṙ ·∇F +
∂F

∂t
= 0, (5)

with allowance for equation (3) and volume conservation,
is fulfilled.

Solution (3) illustrates the Werner-Wheeler method
which found its application in fission of nuclei
(e.g. [10–13]). In this method, irrotational flow in fission
can be considered as a flow of circular layers of liquid.
Moreover, every disc changes with time its thickness and
radius, but remains a disc. Indeed, according to equa-
tion (3), the local velocity turns out to be a linear function
of the Cartesian coordinates of the point x, y, z. Thus,
for every coordinate z, the z component of the velocity
is independent of x and y. This fact proves the Wheeler’s
suggestion in the case of an ellipsoid. The translational ve-
locity of the c.m. of a slice perpendicular to the symmetry
axis is proportional to z.

The vibrational kinetic energy can be found as follows:

T =
1
2
µ

∫
(∇χ)2dV =

1
2
µ

∮
χ(∇χ) · n̂ dS, (6)

where µ denotes the mass per unit volume, n̂ is the unit
normal vector at the surface and dS is the element of
surface area. From equation (3) one gets the expression

T =
1
2
M(c)ċ2 (7)

with the variable mass parameter

M(c) =
1
5
M

(
1 +

1
2
u3

)
, (8)

where M is the total mass of the system, and u stands
for (R/c).

The potential energy is given by

V (c) = 2πσR2

[
u−1/2 arcsin

√
1− u3

√
1− u3

+ u

]
− 4πσR2

for R < c,

(9)

V (c) = 2πσR2

[
u−1/2 arcsh

√
u3 − 1√

u3 − 1
+ u

]
− 4πσR2

for R > c,

where σ is the surface tension. For sodium clusters, we
use a value of 3.8× 10−3 eV/bohr2 for σ, obtained within
the Stabilized Jellium Model [7]. For small amplitudes,
equation (9) reduces to the form of a harmonic oscillator
potential energy

V (c) =
8πσ

5
(c−R)2. (10)

Relativistic units ~ = c = 1, are used throughout the pa-
per. From equations (7, 8, 10), it follows that, for small
amplitudes (u ∼ 1), the system undergoes harmonic mo-
tion with the oscillation frequency

Ω =
ω0√
N
, (11)

ω0 = 4

√
2πσ
3m
≈ 9× 10−3 eV, (12)
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m being the mass of a Na atom, in accordance with what
was said in the introduction. The period of the anharmonic
vibration is given by

τ = 2
∫ c2

c1

√
M(c)

2(E − V (c))
dc, (13)

where c1 and c2 are, respectively, the minimum and max-
imum value of the semi-axis in the z-direction. Here, E
is the total energy, kinetic energy (6) plus potential en-
ergy (9). It will be seen that the period τ is a strongly
increasing function of E. The density of the levels for the
present vibration can be calculated by means of the for-
mula

dn
dE

=
1

2π
d(E τ)

dE
· (14)

Since τ increases rather steeply with E, also dn/dE is a
steep function of E. This may be the source of an impor-
tant damping mechanism of the plasmon mode through
a decay into many large amplitude vibrational modes, as
discussed below.

About the same separation of the vibration levels was
found in reference [14] within the model of irrotational in-
compressible classical liquid drop. This spacing is by two
to three orders of magnitude smaller than the fission bar-
rier in symmetric fission. Such a high density shows that
the collective motion of the ion substratum towards fis-
sion can be treated classically. This aspect is discussed in
detail with respect to ternary fission in reference [14]. We
shall return to its discussion below in the next section.

3 Necking mechanism

In Figure 1 we present the deformation energy calcu-
lated by means of equation (9) divided by 4πR2. This
is a universal function for all the clusters, independent of
the number of constituent atoms. The anharmonic effects
strongly manifest themselves already for vibration ampli-
tudes such that (c−R)/R ≥ 0.05.

How this kind of collective motion can lead to a fission
mode is an interesting question. Symmetrical fission of
sodium clusters was never observed in experiment, while
in many theoretical papers deformation energy and saddle
shapes are studied. To discuss this question, we also con-
sider another kind of deformed shape which finally leads
to fission, as two intersecting spheres. Consider the defor-
mation of a neutral cluster. The corresponding potential
energy of deformation is also plotted in Figure 1. At first
the spheres intersect each other, but, eventually, will sep-
arate. The radii of the spheres are such that the total
volume remains constant, and the distance between their
centers of mass (which do not coincide with the geometri-
cal centers when the spheres actually intersect each other)
is the same as the distance between the centers of mass of
the two halves into which the ellipsoidal shape is divided
by a plane perpendicular to its axis. Only the free surface
of the spheres contributes to the potential energy. As one
can see, the second curve lies higher, up to the point of

Fig. 1. The potential energy of an ellipsoid of revolution,
V (c)/4πR2 versus c/R, is shown by the full line and is com-
pared with the potential energy, represented by the dashed
line, of a cluster with the shape of two intersecting spheres.
The distance between the centers of mass of the spheres is the
same as the distance between the centers of mass of the two
halves into which the ellipsoidal shape is divided by a plane
perpendicular to its axis.

scission, which corresponds to two spheres in contact. But,
after scission, further motion of the separated fragments
does not cause any change of the potential energy. Due to
this circumstance, at some point Rcr the curves cross each
other. Further deformation of an ellipsoidal cluster needs
more energy than the motion of the separated fragments.
The dynamics of the transition between the two families of
deformation involves a mechanism of barrier penetration.
This concerns the very interplay between quantum and
classical mechanics, illustrating quantitative change of the
properties with the size of the system. The Coulomb force
for charged clusters favours deformation towards fission.
The same applies to shell effects for proper systems [14].
It seems however that neither of these reasons can explain
clearly the penetration mechanism. Moreover, symmetric
fission has not been observed yet, even in charged clus-
ters. It seems that the presence of the relevant degree of
freedom is more strongly felt in small Fermi systems. With
increasing size of the system, this degree of freedom is dis-
solved in the thermostat of many single-particle degrees of
freedom, and is thus merely lost due to negligible statisti-
cal weight. This question shall be considered elsewhere, in
finer detail. Note that, in the case of nuclei, a barrier re-
lated to the necking was first considered in reference [15].

In Figure 2, the period, divided by N1/2, is plotted
as a function of the vibration energy divided by N2/3.
Again, a universal function, independent of the numbers of
constituent atoms, is found. The periods divided by N1/2

explicitly display the anharmonic effects, strongly deviat-
ing from the small amplitude behaviour, equation (11).



322 The European Physical Journal D

Fig. 2. The period τ scaled by N1/2 versus the vibrational
energy E scaled by N2/3.

The periods are close to one another for very small vibra-
tion amplitudes, but diverge with the amplitude, when
it becomes large. For pure harmonic vibrations, the pe-
riod scaled with N1/2 is constant for all the energies and
numbers of the constituent clusters. A very large period
associated with a large amplitude oscillation implies that
the cluster will be strongly deformed long enough to allow
for the rearrangement of its particles into two separate
cluster to occur.

In conclusion, we may expect that a plasmon will de-
cay by exciting a large amplitude highly anharmonic os-
cillation, but it may also decay by exciting a very short
wavelength harmonic oscillation of the ionic substratum.

4 Damping of plasmon

The interaction potential between the electronic charge
density fluctuation ρe(r) and the ionic charge density fluc-
tuation ρI(R) is written

H ′ = −e2

∫
d3r d3R

ρe(r)ρI(R)
|r−R|

∼ −e2

∫
d3r d3R

rl<
rl+1
>

ρe(r)Y ∗lm(r̂)Ylm(R̂)ρI(R). (15)

This interaction gives rise to a coupling between the
plasma oscillations and the vibrations of the ionic substra-
tum. Due to resonance effects, this coupling may become
relevant for large wave vectors. The interaction (15) can
induce the development of collective flow towards fission.
For l = 1 fluctuations this effect may be related to the
center of mass motion, but already for l = 2 fluctuations
the appearance of such a collective mode seems possible.

Effectively, let q denote the amplitude of the elec-
tronic density oscillations associated with the plasmon
mode in the cluster and ω the plasmon frequency, so
that the plasmon Hamiltonian is Hpl = p2/2 + ω2q2/2.
Denote by Ω the frequency of the cluster shape oscil-
lations and by Q the corresponding amplitude, so that
Hph = P 2/2 + Ω2Q2/2 is the Hamiltonian describing
the shape oscillations. For small q,Q the deformation en-
ergy of the cluster is V (q,Q) = ω2q2/2 + Ω2Q2/2. How-
ever, Q may easily become large, since the cluster is soft
against shape fluctuations, so that V (q,Q) should not be
expanded in powers of Q. The relevant physical processes
are not harmonic in Q. The elastic energy Ω2Q2/2 should
itself be replaced by a potential V1(Q) and V (q,Q) should
be expanded as V (q,Q) = ω2q2/2+V1(Q)+qV2(Q). Since
the plasmon frequency is essentially independent of the
shape of the cluster, we assume ω to be independent of Q.
This mechanism leads to a strongly anharmonic coupling
between the plasmon degree of freedom and the degree
of freedom associated with the ions, such as the following
model Hamiltonian describes

H = ωa†a+Ωb†b+ g
(
a†bn + b†

n
a
)
. (16)

Since the plasmon is expected to decay into a large am-
plitude vibrational state of the ionic substratum with the
same energy, we assume that ω = nΩ. Let

|Φ〉 = α(t)a†|0〉+ β(t)
b†
n

√
n!
|0〉 (17)

represent the state of the cluster at time t. The time evo-
lution of the amplitudes α, β is determined by the La-
grangian L = i〈Φ|Φ̇〉 − 〈Φ|H|Φ〉. We find L = i(α∗α̇ +
β∗β̇)− (ω(α∗α+β∗β)+G(α∗β+αβ∗)), where G =

√
n!g,

so that
iα̇ = ωα+Gβ, iβ̇ = ωβ +Gα. (18)

If at time t = 0 the cluster supports a plasma oscillation
so that α(t) = α0, β(t) = 0, then at time t we have

α(t) =
α0

2
exp(−iωt)(exp(−iGt) + exp(iGt)). (19)

On the other hand

β(t) =
α0

2
exp(−iωt)(exp(−iGt)− exp(iGt)). (20)

On physical grounds we expect that ω � g. However, the
anharmonicity enhances the coupling by a factor

√
n!. As

a result of this mechanism, energy is transferred from the
plasmon to the ionic degrees of freedom.

5 Rotational motion

Rotational motion of a classic liquid drop has been consid-
ered within certain models e.g. in references [16,17] and
other papers cited therein. The shape of the rotating drop
was restricted to a symmetric ellipsoid. In the case of clus-
ters, however, triaxial shapes have been observed [18]. It
is, therefore, reasonable to abandon the above restriction.
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Let us consider the deformation of a spherical cluster
subject to rotational motion in finer detail [19]. We shall
also consider the influence of such a motion on the stability
of the cluster with respect to the phase transition from
the oblate biaxial to the triaxial form. Assuming rotation
around the x-axis, the energy functional is

W[x(ρ), ω(ρ)] = σ4π
∫

dρ ρ
√

1 + x′2 +
1
2

4πµ
∫

dρω2ρ3x

−λ4π
∫

dρ ρx− λ′4πµ
∫

dρωρ3x , (21)

where λ and λ′ denote Lagrange multipliers fixing the vol-
ume and the angular momentum. Here, ω is the angular
velocity, ρ =

√
z2 + y2, the shape of the cluster is speci-

fied by x(ρ), x′ = dx/dρ, and µ is the mass density. This
functional represents the energy in the lab system with a
constraint on the angular momentum.

Varying the functional (21) with respect to ω, one finds
the relation

λ′ = ω, (22)

from where it follows, in particular, that ω is constant
with respect to ρ.

Substituting equation (22) into equation (21), one ob-
tains the following functional to minimize:

W[x(ρ)] = σ4π
∫

dρ ρ
√

1 + x′2 − λ4π
∫

dρ ρx

−1
2
ω24πµ

∫
dρ ρ3x. (23)

This functional represents the energy in the intrinsic ref-
erence system. The Euler Lagrange equation defining the
deformation of the cluster is

d
dρ

(
ρ

x′√
1 + x′2

)
+
λ

σ
ρ+

ω2µ

2σ
ρ3 = 0. (24)

By integration we obtain

x′√
1 + x′2

+
λ

2σ
ρ+

ω2µ

8σ
ρ3 = 0. (25)

The integration constant is fixed by the requirement
x′(0) = 0. Thus, for small ω,

x′ =
ηρ√

1− η2ρ2

(
1 + γ

η2ρ2

1− η2ρ2

)
, (26)

where η = λ/(2σ), γ = ω2µσ2/λ3. Integrating again, we
obtain

x2

1− 4γ
+

ρ2

1− 2γ
=

4σ2

λ2
· (27)

From volume conservation, it follows λ2 = λ2
0 (1− 8γ/3) .

Thus, with γ0 = ω2µσ2/λ3
0,

x2

1− 4
3γ0

+
ρ2

1 + 2
3γ0

=
4σ2

λ2
0

· (28)

If the droplet undergoes a vibrational motion superim-
posed on a rotational motion, the velocity field may be
decomposed into a field describing a pure rotational mo-
tion and a field describing an irrotational flow, such as

v = ω
(
zĵ− yk̂

)
+ q

(
x̂i + yĵ− 2zk̂

)
, (29)

for, let us say, t = 0. Both the spring constant and the
mass parameter of the vibration are affected by the rota-
tion. Depending on the value of the angular velocity ω, the
spring constant may become negative due to centrifugal
stretching, indicating the tendency to fission.

Thus, the shape undergoes a phase transition. Let us
consider the process in finer detail. Regarding a triaxial el-
lipsoid, the term corresponding to the kinetic energy (and
representing the centrifugal potential with the minus sign)
can be obtained as

T =
1
10
ω2M(b2 + c2) =

5L2

2M(b2 + c2)
, (30)

where M is the mass of the cluster. In obtaining equa-
tion (30), we took into account the relation between the
angular momentum and the angular velocity

ω =
5L

M(b2 + c2)
, (31)

which can be obtained by differentiating the first expres-
sion in (30) with respect to ω.

Therefore, for fixed L, the kinetic energy term (30) de-
creases with the deformation, decreasing thus the energy
functional. The gain is proportional to L2. On the other
hand, the deformation increases the surface energy. For a
triaxial ellipsoid, the latter has a general form

S =
3V
2πa

∫ 2π

0

dφ
∫ 1

0

r dr√
1− r2

×
√

1− r2 +
(a
b
r cosφ

)2

+
(a
c
r sinφ

)2

. (32)

If ω is not high, equation (32) can be expanded in a Taylor
series with respect to a small deformation parameter δ:

b = r0

(
1− δ +

1
2
δ2

)
, c = r0

(
1 + δ +

1
2
δ2

)
. (33)

Substituting equation (33) into equation (32), one finds
that the first non vanishing δ-dependent term is of second
order in δ:

S =
3V
r0

∫ 1

0

r dr√
1− r2

√
p

[
1 +

r2

p

(
1− r2

4p

)
δ2

]
, (34)

where
p(r) = κ2 + r2

(
1− κ2

)
.

with

κ =
r0
a

=
r3
0

R3
·
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The value of r0 is determined by minimizing, for fixed ω,
E ′ = Uc.f.(r0) + V (r0), where Uc.f.(r0) = −T and V (r0) =
V (a), according to the second of equations (9), with u =
r2
0/R

2 = R/a. We observe that E ′ is not the true energy. It
is the energy in the intrinsic system, but, in the lab system
it actually represents the Lagrangian since Uc.f.(r0) = −T,
where T = ω2Mr2

0/5 = 5L2/(4Mr2
0) is the kinetic energy.

The true energy, in the lab system, is E = 5L2/(4Mr2
0) +

V (r0). Minimizing E for fixed angular momentum L is the
same as minimizing E ′ for fixed ω. It is easily verified that,
for sodium clusters, there is an asymptotic value for the
angular velocity, ω = 0.96Ω, with Ω defined in (11), for
which E goes to infinity.

Next, we consider the effect of rotation on a cluster
with a small instantaneous triaxial deformation due to
vibrational motion. In particular, we focus on the spring
constant for triaxial deformation,

K = 2σ
3V
r0

∫ 1

0

r dr√
1− r2

r2

√
p

(
1− 1

4
r2

p

)
− 4

5
Mr2

0ω
2. (35)

There is a negative contribution to the spring constant,
which physically comes from the term of the centrifugal
potential, and a positive contribution arising from the sur-
face tension. Which one of the two contributions domi-
nates depends on the value of r0/R. This value is, in turn,
ruled by the value of the frequency ω.

6 Numerical results for rotation

We find that K given by equation (35) becomes negative
for

ωc = 0.56Ω, (r0)c = 1.13R, Lc = 0.72L0, (36)

where L0 = 2MR2Ω/5, is the angular momentum of
a spherical cluster with the same volume, rotating with
frequency (11). We remark that all the above criti-
cal quantities scale with powers of N , e.g. ~ωc =
5.1 × 10−3N−1 eV , (r0)c = 4.44 N−1/3 bohr , Lc =
62.3N7/6~. Furthermore, the critical value of the dimen-
sionless quantity

y =
5

16π
L2

MR4σ
·

is yc = 0.593. Further details on the behavior of the “over-
critical” system depend mainly on whether the angular ve-
locity ω is considered as the basic variable parameter, or
the angular momentum L. If ω is varied, there is a rather
abrupt change of shape for ω > ωc. This is due to the cen-
trifugal acceleration which further stretches the optimal
shape of the cluster. The behaviour of the rotating cluster
is illustrated in Figure 3. A plot of the energy E of the
rotating cluster versus ω, for the axial symmetric shape,
is shown in Figure 3a. For values of ω above the critical
value, the curve represents a metastable state. We also
observe that the cluster does not support higher angular
velocities than a specific maximum. If, artificially, a higher

(a)

(b)

Fig. 3. The total energy of the rotating cluster E versus the
frequency ω scaled by Ω (see Eq. (15)), is shown in (a). In (b),
the same quantity is shown versus the angular momentum L
scaled by L0 (the angular momentum of the corresponding
spherical cluster).

angular velocity than that maximum is imposed, the clus-
ter unavoidably disintegrates. In Figure 3b, the energy is
presented as a function of L, again for the axial symmetric
shape. Comparison of Figures 3a and 3b shows that the
angular velocity is not an adequate dynamical variable
at critical values of L. This is in contrast e.g. with the
cranking model widely used in nuclear physics. Further
increase of the angular momentum, or the kinetic energy
of rotation, occurs approximately without change of the
angular velocity ω. That mainly causes further elongation
of the shape of the rotating cluster. Approximately linear
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Fig. 4. Total energy E of a 200-atom rotating sodium cluster
versus the angular momentum L for the axial symmetric shape
(dashed line) and the triaxial shape (full line).

dependence of E on L for L � Lc in Figure 3b shows
that rotation at overcritical angular momenta occurs with
constant ω.

Furthermore, we have minimized, with respect to b
and c, the full energy for different values of L around the
critical value. In Figure 4 we present the full energy as
a function of L for the axial symmetric and the triaxial
shape, for a sodium cluster with N = 200. It can be seen
that a phase transition occurs at L ≈ 4× 104~.

We note with equation (36) that the critical energy
and momentum increase with the number of atoms in the
cluster as N2/3. In Table 1 we present the change of the
half-axes of the clusters due to the rotation energy. One
can conclude from those results that a phase transition of
the first kind takes place, when the shape of the cluster
abruptly changes at the critical point. Note that the half-
axis which is in the direction of the rotation momentum re-
mains practically unaffected by the phase transition. The
change of shape occurs in the plane perpendicular to the
rotation axis, from a circular to an elliptic form, in accor-
dance with what is said above.

The kinetic energies of rotation at the critical point of
the phase transition Ec turn out to be in the eV to tens-eV
energy domain. Such energies look very accessible and may
be realized in experiment by merging of colliding clusters.
The change of the shape can be detected in experiment in
the same ways as in the case of nuclei, e.g. by splitting of
the GDR.

7 Conclusion

We now summarize the results and outline perspectives
for further investigation.

In the present paper we have studied some questions
connected with the vibrational and rotational motions of
the ionic core arising in an excited sodium cluster, and

Table 1. Change of the ellipsoidal shape of a rotating cluster
with the a, b and c the half-axes in the point of the phase
transition.

E, eV a, bohr b, bohr c, bohr

N = 24, R = 11.34 bohr

6.537 7.95 13.54 13.54

6.543 7.85 11.09 16.72

N = 50, R = 14.48 bohr

10.66 10.2 17.3 17.3

10.67 10.0 14.2 21.3

N = 100, R = 18.2 bohr

16.81 12.88 21.70 21.7

17.31 12.3 16.4 30.0

N = 300, R = 26.3 bohr

35.2172 18.4 31.4 31.4

35.2178 18.2 25.9 38.6

N = 500, R = 31.2 bohr

49.51 21.9 37.2 37.2

49.60 21.9 30.6 45.4

their relation to the collective motion towards fission.
First, we would like to stress that the effects considered
arise at energies of tens eV, which can be realized in ex-
periment e.g. in collisions of clusters. Our consideration
is based on the LDM. One might expect the appearance
of certain peculiarities due to the shell effects. The latter
effects, however, should not affect essentially the general
picture presented previously, and may be considered in a
separate paper. The same applies to the Coulomb effects
arising when ionization processes take place, which also
occur in the collisions.

The main results obtained above can be summarized
as follows.
(1) Anharmonic effects are considered which essentially

influence the energy spacing and period of the large-
amplitude vibration. These effects are important,
specifically, for the coupling between the ionic and
electronic motion.

(2) Change of the shape, which arises on account of the
rotation of the cluster with large angular momentum,
is also considered. The results obtained may be also
of interest for nuclear physics (e.g., for the cranking
model). For relatively small angular velocities, the re-
sults are obtained analytically. For arbitrary veloc-
ities, a phase transition takes place to the triaxial
shape. These effects could be observed in experiment
via splitting of the giant multipole resonances.

(3) A new mechanism of necking is suggested based on
the Frank-Condon principle.
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